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Abstract
In previous work we developed a method using degenerate perturbation theory
about the Ising limit to derive an effective Hamiltonian describing quantum
fluctuations in a half-polarized magnetization plateau on the pyrochlore lattice.
Here, we extend this formulation to an arbitrary lattice of corner sharing
simplexes of q sites, at a fraction (q − 2k)/q of the saturation magnetization,
with 0 < k < q . We present explicit effective Hamiltonians for the examples
of the checkerboard, kagome and pyrochlore lattices. The consequent ground
states in these cases for k = 1 are also discussed.

1. Introduction

Despite decades of theoretical and experimental work, frustrated quantum magnets continue to
be an exciting subject for current research both experimentally and theoretically. Analytical
approaches to such spin systems have, however, not often directly confronted experiment.
Theoretically, the semi-classical spin–wave theory (i.e. 1/s expansion) has probably been most
successful. For instance, quantum corrections to the classical staggered magnetization are
known to be small even for s = 1/2 in the unfrustrated square lattice. The utility of the
1/s expansion, however, diminishes rapidly as frustration is increased.

This situation is at its extreme in the class of maximally geometrically frustrated
structures, which includes the two-dimensional kagome and checkerboard lattices and the
three-dimensional pyrochlore lattice. These structures have the common feature that they can
be decomposed into distinct ‘corner sharing’ simplexes, clusters of spins in which all pairs
are connected by nearest-neighbour bonds, such that the entire lattice is covered by these
simplexes; different simplexes share at most one site and no bonds. The nearest-neighbour
antiferromagnet on this lattice has the property that its Hamiltonian can be written entirely in
terms of the sum of spins on each simplex. At the classical level, this implies a large degeneracy,
since any change in configuration which keeps this sum constant on each simplex cannot change
the energy. This leads to considerable technical difficulties in the 1/s expansion, which have
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been addressed in tour de force work by Henley and collaborators [1]. An unfortunate outcome
of this work is that the leading order (O(1/s0)) corrections (spin–wave zero point energy) do
not fully split the classical degeneracy in most cases of interest. Given the challenges already
present at O(1/s0), it is not surprising that higher order corrections in 1/s, which would be
necessary to resolve the degeneracy fully and determine the quantum ground state for large s,
are so far not available.

In recent work, we have demonstrated that the resolution of the classical degeneracy can
be understood in an alternative approach based on perturbation theory about the limit of strong
Ising exchange anisotropy. That is, we consider the XXZ model

H = J
∑

〈i j〉
Sz

i Sz
j + J

2
α

∑

〈i j〉

(
S+

i S−
j + h.c.

)
− H

∑

j

Sz
j , (1)

and carry out perturbation theory in α for the degenerate ground-state manifold. This is
expected to be a reasonable approximation in many problems of interest. First, the semiclassical
approach demonstrates rather generally that in these models quantum fluctuations favour
collinear ordered states, in which all spin expectation values are aligned along a particular axis,
e.g. Sz . Choosing Ising anisotropy only selects this axis, but does not prejudice the ordering
beyond this choice. Second, some of the most interesting applications are to magnetization
plateaus , which often appear in frustrated magnets (e.g. in pyrochlores [4]). General arguments
(see e.g. [2]) imply that ordering is again collinear on such plateaus. Moreover, since such
a plateau occurs in a substantial applied field, the component of each spin parallel to this
field is clearly on average larger than its transverse ones. Furthermore, the introduction of
Ising anisotropy does not modify the symmetry of the Hamiltonian in this case. In [3], we
have demonstrated explicitly how to carry out easy-axis degenerate perturbation theory for
a magnetization plateau on the pyrochlore lattice at half the saturation polarization. The
result was an effective quantum ‘dimer’ Hamiltonian describing the splitting of the degenerate
manifold of plateau states.

In this paper we describe the generalization of these results to the lattices described above,
for various zero field and plateau states. Our results are obtained under the assumption that each
corner-sharing simplex contains q sites, and that the Ising ground-state manifold comprises
states with k ‘minority’ (Sz = −s) and q − k ‘majority’ (Sz = +s) spins per simplex.
The cases mentioned above correspond to q = 3, k = 1 (kagome lattice at magnetization
M = 1/3Ms ), q = 4, k = 2 (checkerboard and pyrochlore lattices at M = 0), q = 4, k = 1
(checkerboard and pyrochlore lattices at M = 1/2Ms ). For the k = 1 cases, the corresponding
effective Hamiltonians are generalized ‘quantum dimer models’, and we discuss their ground
states based on known results and simple arguments. The solutions for the ground states of
the k = 2 models (corresponding to zero magnetization) on the pyrochlore and checkerboard
lattices are left for future work.

The remainder of the paper is organized as follows. In section 2, we describe the derivation
of the effective Hamiltonians. In section 3, we give explicit forms for the above-mentioned
lattices. In section 4 we discuss the ground states of the effective models in the k = 1 cases.

2. Resumé of method

In this section, we review the degenerate perturbation theory (DPT) methods developed in [3].
Because the fine details have already been given in [3], we will highlight only the main points
and those modifications needed for the more general applications in this paper.

For any (apart from a set of measure zero) fixed field H in the Ising limit α = 0, the
ground states of equation (1) comprise a massively degenerate manifold of configurations of
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constant magnetization—‘plateau states’. Specifically, in these configurations (as indicated in
the introduction) all spins are aligned along the field axis, i.e. Sz

i = sσi , with σi = ±1, and
every simplex contains k minority (σi = −1) spins and q − k majority (σi = +1) spins. We
seek an effective Hamiltonian in this degenerate subspace.

We follow the Brillouin–Wigner formulation of DPT. The ground state wavefunction
satisfies the exact equation

[
E0 + PH1

∞∑

n=0

GnP
]

|�0〉 = E |�0〉 = Heff|�0〉, (2)

where the operator G = 1
E−H0

(1 − P)H1. Here H0 = H|α=0, and H1 = H−H0. Because the
resolvent contains the exact energy E , equation (2) is actually a non-linear eigenvalue problem.
However, to any given order of DPT, E may be expanded in a series in α to obtain an equation
with a true Hamiltonian form within the degenerate manifold. Each factor of G is at least of
O(α) due to the explicit factor in H1, with higher order corrections coming from the expansion
of E . Following the strategy of [3], we will obtain the lowest order non-constant diagonal
and off-diagonal terms in Heff. Because we seek only the lowest order term of each type, it is
admissible to replace E by E0 in G, a considerable simplification.

With this replacement, we need only calculate the successive applications of G and H1

in equation (2) starting from some arbitrary initial state. This is facilitated by the simple
geometry of the lattice, and by symmetry. The Hamiltonian in equation (1) has a global
U(1) symmetry, corresponding to rotations about the z-axis. As such, the z-component of
the total magnetization

∑
j Sz

j is a conserved quantity at every stage of DPT. This leads to
some important properties of the resolvent operator R = (H0 − E0)

−1:

R−1 = J

2

∑

i j

�i j S
z
i Sz

j − H
∑

j

Sz
j − E0, (3)

where �i j is the adjacency matrix, i.e. �i j = 1 if i, j are nearest neighbours and �i j = 0
otherwise. We will need the action of R not on states in the ground-state manifold but on
an arbitrary virtual state reached in a DPT process. We describe these states by integers m j ,
with 0 � m j � 2s, such that Sz

j = σ j (s − m j). Conservation of magnetization enforces∑
j m jσ j = 0 for all virtual states. One may readily confirm the additional identity

∑

i

�i jσi = 2(q − 2k) − 2σ j , (4)

which results from the constraints on the spin configurations contained on the two simplexes
sharing site j . Using these two relations, the inverse resolvent can be rewritten as

R−1 = J

2

∑

i j

�i j mi m jσiσ j + 2s J
∑

j

m j . (5)

Note that the resolvent only involves variables on the sites that are modified in the DPT process,
since all other m j = 0. With this observation, we are ready to describe the calculations.

We first consider the off-diagonal term, which must cause transitions from one plateau
state to another. To maintain the constraint requires flipping spins ±s → ∓s in a closed loop
of alternating ±s spins. This is because an open string of spin transfer changes the number
of minority sites on the simplexes at the two ends of the string: one suffers a deficit and the
other suffers a surplus. Since H1 is a sum of spin transfer operators on links of the lattice, one
may readily deduce the order at which the first off-diagonal term appears, without calculating it
explicitly. The smallest even-length non-trivial loop in the lattice (a non-retracing walk residing
on more than one simplex) is of some even length L (L = 6 for pyrochlore and kagome, L = 4
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for checkerboard) and surrounds a plaquette of the lattice. This loop contains L/2 minority
sites that will be converted to majority sites. Each flipping takes 2s operations of H1, so that
the off-diagonal term is of order αsL . For large s, this becomes of very high order and entirely
negligible. It can, however, be important for moderate values of s.

As is clear from this discussion, the lowest-order off-diagonal term generates a single
process: flipping all spins along one length-L loop. Thus it has the general form

Hoff diagonal = −KL (s)αLs J
∑

P
(| ↓↑ . . . ↓↑〉〈↑↓ . . . ↑↓ | + h.c.) . (6)

What remains to be calculated is the coefficient KL (s) multiplying the plaquette flipping
operator. In [3], an iterative method was developed to calculate this amplitude by considering
successive applications of H1 on any initial state. Because all the spin-flips occurring in
any given process are on a single length-L loop, the calculation is insensitive to the global
structure of the lattice, and depends only upon the length of the plaquette. This implies that,
for hexagonal plaquettes, the off-diagonal coefficient is identical to that calculated in [3], even
on the kagome lattice! The values for K6(s) for s = 1/2, 1, 3/2, 2, 5/2 were calculated in [3].

For the square plaquette lattices, the calculation is actually significantly simpler. At a
given stage in the DPT process, the resolvent can be calculated using the number of times
every (alternating) link has undergone spin transfer up to that step. For the square plaquette,
there are only two such links, as opposed to three for the hexagonal plaquette. After � link
operations, one finds that the resolvent is given simply by

R−1
� = J�(4s − �). (7)

Applying this formula, the off-diagonal coefficient is determined explicitly for any value of s:

K4(s) = 4s

24s

[(2s)!]2

(4s − 1)! . (8)

We now turn to the diagonal terms in DPT. Unlike the off-diagonal terms above, these
occur at a fixed order in α independent of s. To understand at what order this occurs, first note
that a diagonal DPT process of order n, which starts out from some plateau state and returns
to it in the end, can have at most n sites modified, since each site that is modified must be
modified again at least once in order to return to its original configuration. From the structure
of the resolvent discussed above, we say that at nth order, the diagonal effective Hamiltonian
is a sum of terms, each of which involves at most n Ising spin variables. The diagonal effective
Hamiltonian therefore has the general structure

Heff[{σi}] =
∑

n

∑

Gn

∑

a1...an

(
∏

(i j)∈Gn

�ai a j

)
fGn (σa1 , . . . , σan ), (9)

where Gn denotes a ‘graph’ of lines connecting the labels a1 . . . an visualized as points, i.e. a
set of unordered pairs of these labels. Note that the dependence upon the lattice geometry enters
only through �i j . This function can be derived from direct evaluation of equation (2) using the
simplified resolvent, as outlined in [3].

Remarkably, for any lattice composed of corner-sharing simplexes, all terms in
equation (9) with n < L are constants in the ground-state manifold. This was demonstrated
in [3] for the case of the pyrochlore lattice (where L = 6), but the arguments follow more
generally. We outline the basic ideas, referring to [3] for details. First, one can show that
all ‘contractible’ diagrams, in which at least one point in Gn is connected to fewer than two
other points, can be reduced to a term of lower order. This follows by explicitly summing
over the corresponding index (e.g. an), using the identity in equation (4) and the constant total
magnetization. Second, one shows that ‘non-contractible’ diagrams with n < L are constant
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by a different argument. First, one notes that the sites ai for which
∏

(i j)∈Gn
�ai a j 
= 0 must

form a compact cluster, and for n < L this cluster cannot span the smallest non-trivial loop.
Summing over all clusters satisfying

∏
(i j)∈Gn

�ai a j 
= 0, one again obtains a constant. This
is essentially because any permutation of the cluster sites ai gives another cluster, and the sum
over all such permutations can be reduced using the fact that the allowed spin configurations of
a simplex are all permutations of one reference configuration (with k minority spins on q sites).

The lowest non-constant term in the diagonal effective Hamiltonian therefore comes at
order n = L. Indeed, by application of the same arguments described above, only one distinct
term at this order is non-constant: the one for which Gn consists of a single loop connecting all
labels, i.e.

∏
(i j)∈GL

�ai a j = �a1a2�a2a3 · · · �aL−1aL �aL a1 . This term can be explicitly evaluated,
and has non-constant contributions only when (a1, . . . , aL) lie sequentially along one of the
length-L loops of the physical lattice. Evaluating fGn at the spins of these sites leads to the
final expression for the diagonal energy function.

3. Results

The diagonal effective Hamiltonian obtained above can in all cases be written as a sum over
plaquettes

Hdiag =
∑

P
EP(σP1, . . . , σPL), (10)

where σP1 · · ·σPL are the L sites ordered sequentially around the plaquette P . We choose the
function E to have cyclic symmetry. For the kagome and pyrochlore lattices, the plaquettes
are hexagonal, bounded by six links. For the checkerboard lattice, the plaquettes are square,
bounded by four links.

Remarkably, the manipulations in the previous section imply that as a function
EP(σ1, . . . , σL ) is the same for all lattices with the same plaquette size (4, 6, 8 etc), for any k.
The differences arise in the allowed plaquette configurations, which depend strongly on q and
k. This function is most conveniently described by giving the energies for all possible plaquette
configurations. For the lattices with hexagonal plaquettes we find

E0 = E0̄ = 0, E1 = E1̄ = 1

4
E2 = 1

4
E2̄ = − Js3α6

32(1 − 4s)2
,

E3 = E3̄ = − Js4
(
512s2 − 256s + 33

)
α6

16(3 − 8s)2(4s − 1)3
, E4 = E4̄ = − J (1 − 8s)2s4α6

8(4s − 1)5
,

E5 = −6Js5
(
3072s5 − 4352s4 + 2432s3 − 660s2 + 88s − 5

)
α6

(3 − 8s)2(4s − 1)5
(
24s2 − 22s + 5

) , E6 = 6E1̄,

E7 = − Js4
(
128s2 − 40s + 3

)
α6

8(1 − 4s)4(8s − 3)
− 4Js6

(
5184s3 − 3600s2 + 789s − 56

)
α6

3(4s − 1)5
(
64s2 − 32s + 3

)2 (
72s2 − 18s + 1

)

− Js4α6

2(1 − 4s)2(8s − 3)
.

(11)

The various plaquettes types are shown in figure 1(a). For the pyrochlore k = 2 plateau, all 13
plaquette configurations in figure 1(a) are possible. Not surprisingly, the energies for plaquette
configurations with up and down spins swapped are identical, since in this case (k = 2, q = 4)
there are equal numbers of minority and majority sites on each simplex. Interestingly, this case
can be interpreted as an ‘ice model’, in which the two down spins on a tetrahedron indicate the
locations of protons on the oxygen atom at its centre.

For the kagome k = 1 antiferromagnet at 1/3 magnetization and the pyrochlore k = 1
antiferromagnet at 1/2 magnetization (the subject of [3]), there are only five allowed plaquette
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5 6 7

0 1 432

0 1 2 3 4

(a) hexagonal plaquette

1

0 1

2

3

0

(b) square plaquette

Figure 1. Hexagonal and square plaquette Ising configurations. The minority sites are denoted by
solid (red) circles.

(This figure is in colour only in the electronic version)

configurations, those with no two neighbouring minority sites. These are the plaquette
configurations labelled 0, 1, 3, 4, 5. Their energies are the same expressions as in (11).

For lattices with square plaquettes, we find

E0 = E0̄ = 0, E1 = E1̄ = − Js3α4

2(4s − 1)2
,

E2 = − Js3
(
64s2 − 24s + 3

)
α4

2(4s − 1)3(8s − 1)
, E3 = − 8Js4

(
8s2 − 5s + 1

)
α4

(4s − 1)3
(
16s2 − 14s + 3

) .

(12)

The square plaquette types are described in figure 1(b). The k = 2 (zero magnetization) plateau
of the checkerboard lattice allows all six plaquette types outlined in figure 1(b). For k = 1 (1/2
magnetization), only types 0, 1, 3 are allowed.

As explained in detail in [3], these energies are actually slightly redundant. To see this, we
first define xa as the fraction of plaquettes in the lattice in configuration a. Then the energy per
plaquette of any state is given by

Hdiag/N =
∑

a

xaEa, (13)

where N is the total number of plaquettes. Now one notices that the fractions obey two global
constraints: first the fractions must sum to

∑
a xa = 1, and second, the total fraction of minority

sites must be k
q . Denoting the fraction of minority sites in each plaquette configuration by Ma ,

the latter constraint implies
∑

a xa Ma = k
q . Because of these two constraints, we see that it is

possible to shift the energies in equation (13) in such a way as to change the energy per plaquette
by a constant for all allowed configurations: Ea → c0 + c1 Ma , with c0 and c1 arbitrary . By
appropriate choice of these constants, one can tune two plaquette configuration energies to zero.

4. Lowest energy states for the k = 1 effective Hamiltonians

The plateau states described above can always be mapped to (sometimes overlapping) dimer
coverings on lattices with sites at the centre of each simplex, and links passing through every
site. Each site in the dimer lattice therefore has q links emanating from it. A minority site
in the original lattice corresponds to the presence of a dimer on the corresponding link in the
dimer lattice. With k minority sites, each site in the dimer lattice is covered by k dimers. The
diagonal term in each effective Hamiltonian simply assigns different energies to the various
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dimer coverings. For the cases with k = 1, which correspond to plateau states with non-
vanishing magnetization, these models are of the form of generalized quantum dimer models
(QDMS) [5], though often with a modified and more complicated diagonal term. In this
section, we use known results for these QDMs and simple optimization arguments to analyse
the particular examples for which we have derived the effective Hamiltonian in the previous
section.

4.1. Checkerboard lattice

First we address the simplest effective Hamiltonian—the one obtained for the checkerboard
lattice. The dimer lattice is the square lattice, and so for k = 1 the Hilbert space of dimer
coverings is the same as that of [5].

For k = 1, there are only three plaquette configurations possible, so we shift energies
so that only the energy of the flippable plaquette (type 3) is non-zero and equal to V =
E0 + E3 − 2E1. For s > 1

2 it is straightforward to show that V < 0. For s = 1
2 there is a

divergence, which indicates that the procedure is invalid in that case. For spin-1/2, this occurs
because the off-diagonal term appears already at order α2, whereas the diagonal term appears
at order α4. Because off-diagonal processes are possible already at second order, some of the
intermediate projection operators in equation (2) must be treated more carefully in that case.
However, for s = 1

2 the off-diagonal term is in any case dominant, so the diagonal term can be
neglected. Therefore we take V = 0 in this case, and for all s � 1

2 we have V � 0.
Adding the lowest order off-diagonal term, which flips between the two type 3 plaquette

configurations on a given plaquette, we find the lowest order diagonal and off-diagonal terms
form a QDM of exactly the same form as [5]

HQDM = V
∑

P

( ) − t
∑

P

( )
, (14)

where t = K4(s)α4s J > 0.
The model (14) has undergone in-depth numerical scrutiny (see [6]), which shows that for

V/t < +0.6 ± 0.05 one obtains a columnar phase in which the dimers preferentially sit on
staggered columns of parallel bonds. For any value of s, we have V/t � 0. Therefore, the
ground state is always in the columnar phase.

4.1.1. Kagome lattice. Next we turn to the kagome k = 1 plateau, in which the magnetization
is 1

3 of the full polarization possible. The dimer lattice in this case is the honeycomb lattice,
and so for k = 1 the Hilbert space of dimer coverings is that of the QDM of [7]. The effective
Hamiltonian takes on the form

HQDM =
∑

P
EP − t

∑

P

( )
, (15)

with the plaquette energies defined in equation (11), and t = K6(s)α6s J > 0. As before, for
spin s = 1

2 the diagonal energies are taken to be 0. In that case, the model reduces to a particular
case of the model considered in [7], in which they find the phase is a ‘plaquette valence bond
solid’, in which resonating plaquettes (superpositions of the two type 5 configurations) form a√

3 × √
3 sublattice of all plaqettes.

We can tune the honeycomb lattice plaquette energies so that types 0 and 3 have energy 0.
The remaining plaquette energies are V5 = 1

2 (E0 + 2E5 − 3E3), V1 = 1
2 (−E0 + 2E1 − E3),

V4 = E4 − E3. From equation (11), we find that for s � 1, V5 < 0 and V1,4 > 0, so that the
flippable plaquettes (type 5 in figure 1(a)) are favoured energetically.

7
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Ignoring the off-diagonal term for a moment, the lowest energy dimer-covering
configuration for the entire range of s has the

√
3 × √

3 structure of the columnar state of [7].
This dimer covering includes only type 0 and type 5 plaquettes, with 1

3 of the plaquettes in
the type 0 configuration, and the remaining 2

3 plaquettes in the type 5 configuration. From
the constraint on the total fraction of the minority sites

∑
a xa Ma = 1

3 we can immediately
deduce that x5M5 � 1

3 , since all xa � 0 and all Ma � 0. With M5 = 1
2 we find that

x5 � 2
3 , so that

√
3 × √

3 state has the maximum fraction of type 5 (flippable) plaquettes we
can pack on the lattice, already an indication that this is a very good energy state. Since the
remaining plaquettes are of type 0 with energy 0, which is the second best energy possible for
any plaquette configuration, this is clearly the lowest energy possible for any dimer covering in
this model.

Next we will try to analyse the model (15) with the off-diagonal included. Since the
diagonal term favours flippable plaquettes, it is not unreasonable to approximate V1,4 ≈ 0.
Then our model becomes the same as the QDM of [7]

HQDM = V
∑

P

( ) − t
∑

P

( )
, (16)

where V = V5 � 0. Calculating the off-diagonal coefficient t by the methods of section 2,
we obtain α6(s−1)V/t = −0.246 927,−2.245 11,−45.155,−1228.23, respectively, for s =
1, 3/2, 2, 5/2. For all s > 1, even when extrapolating α → 1, we find that the ratio V/t
takes on a value that puts it in a columnar valence bond solid phase, according to the results
of [7]. For s = 1, the diagonal and off-diagonal terms are of the same order in α, and the ratio
V/t ≈ −0.247 is α-independent. However, this puts the system described by equation (16)
within the quoted error bar for the transition point between the plaquette and columnar valence
bond solid phases in [7]: V/t = −0.2 ± 0.05. The s = 1 case may therefore be more sensitive
to the values of V2,4 than other values of s.

4.2. Pyrochlore lattice

Finally we turn to the case of the pyrochlore lattice. The k = 1 case was discussed in [3],
but we will give a brief summary here. As discussed in section 3, the off-diagonal terms of
the plaquette energies are identical to those on the simpler kagome lattice. Thus the effective
Hamiltonian is the same as the one given in equation (15), but with dimers on links of the
diamond lattice. For sufficiently large s, the off-diagonal term can be neglected, and one
need only find the classical dimer covering minimizing the diagonal energy. For large s  1,
this classical optimization problem can be analytically solved. The resulting ‘trigonal7’ state
has trigonal symmetry and a seven-fold enlarged magnetic unit cell. Numerical investigations
estimate that this state obtains for s � 2.

For spin s = 3/2 the situation is more complex. Ignoring first the off-diagonal term, the
diagonal term alone does not fully split the degeneracy of the dimer manifold, and the ground-
state subspace grows exponentially with the system length. If an extrapolation is made to the
isotropic limit α = 1, the off-diagonal term is non-negligible. One may approximately include
its effects by using equation (16), as discussed above for the kagome lattice. In this model, two
likely ground states were proposed in [2, 3]: the ‘R’ state, with a four-fold enlarged simple
cubic magnetic unit cell, and a ‘resonating plaquette state’, with a more complex structure.

For s = 1 and 1/2, the off-diagonal term is dominant. While the above R and resonating
plaquette states remain candidates, another possibility is a U(1) spin liquid state, which is
known to be the ground state of equation (16) for V/t close to but less than 1.
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